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Chapter 1

Experiments, Models, &
Probability

1.1 Probability Spaces
A probability space (Ω,F , P ) is a mathematical construct that allows us to
model an experiment. The sample space Ω is the set of all possible out-
comes/observations of the experiment. The outcomes must be mutually ex-
clusive and collectively exhaustive. The event space F denotes the set of all
possible events, where each event is a subset of the sample space containing zero
or more outcomes. The probability law P : F → [0, 1] assigns a probability
between zero and one to each event in the event space.
Example: Consider tossing a fair coin twice. Each toss, we can get either head
(H) or tail (T). Suppose we are interested in how many times we get a head.

Ω = {HH,HT, TH, TT}

F = {n heads, n ∈ Z}

P (n heads) =


1/4 if n = 0

1/2 if n = 1

1/4 if n = 2

0 otherwise

A probability law must satisfy the following probability axioms:

1. Non-negativity – P (A) ≥ 0, ∀A ∈ F

2. Normalization – P (Ω) = 1

3. Additivity – P
(
∪iAi

)
=
∑
i P (Ai), ∀ disjoint Ai ∈ F

7



CHAPTER 1. EXPERIMENTS, MODELS, & PROBABILITY

Probability laws also satisfy several other properties that can be derived from
the probability axioms:

1. P (∅) = 0

2. P (AC) = 1− P (A), ∀A ∈ F

3. A ⊂ B =⇒ P (A) ≤ P (B), ∀A,B ∈ F

4. P (A ∪B) = P (A) + P (B)− P (A ∩B), ∀A,B ∈ F

5. P (A ∪B ∪ C) = P (A) + P (AC ∩B) + P (AC ∩BC ∩ C), ∀A,B,C ∈ F

6. P
( n⋃
i=1

Ai

)
≤
∑n
i=1 P (Ai), ∀Ai ∈ F

1.2 Conditional Probability & Bayes’ Rule
The conditional probability P (A|B) is the probability that event A occurred
given that event B with probability P (B) > 0 occurred, which is defined as

P (A|B) =
P (A ∩B)

P (B)
.

Notice that, from this definition, we can also say that the probability that event
B occurred given that event A with probability P (A) > 0 occurred is

P (B|A) =
P (A ∩B)

P (A)
.

Now we have two expressions for the probability that both A and B occurred:

P (A ∩B) = P (A|B)P (B) and P (B ∩A) = P (B|A)P (A).

This now allows us to express Bayes’ rule, which says that given an event B
with probability P (B) > 0 has occurred, the probability event A occurred is

P (A|B) =
P (B|A)P (A)

P (B)
.

Our definition of conditional probability also allows us to write the law of total
probability, which says that if the events A1, . . . , An are mutually exclusive
and collectively exhaustive, then

P (B) =

n∑
i=1

P (Ai ∩B) =

n∑
i=1

P (B|Ai)P (Ai).

Combining the definition of conditional probability with the law of total prob-
ability, we get a more general definition of Bayes’ rule, which says that if the
events A1, . . . , An are mutually exclusive and collectively exhaustive, then for
any event B such that P (B) > 0, we have

P (Aj |B) =
P (B|Aj)P (Aj)

P (B)
=

P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

.

Probability & Random Processes | S. Pohland



CHAPTER 1. EXPERIMENTS, MODELS, & PROBABILITY

1.3 Independence
Two events A and B are said to be independent if the occurrence of one event
provides no information about the occurrence of the other. For example, the
event of drawing an Ace and the event of rolling a 5 are independent because
the fact that I drew an Ace does not impact the probability that I roll a 5. More
formally, events A and B are independent if and only if

P (A|B) = P (A) and P (B|A) = P (B).

This is equivalent to saying that A and B are independent if and only if

P (A ∩B) = P (A)P (B).

Three events A1, A2, and A3 are mutually independent if and only if

1. A1 and A2 are independent,

2. A1 and A3 are independent,

3. A2 and A3 are independent, and

4. P (A1 ∩A2 ∩A3) = P (A1)P (A2)P (A3).

Extending the definition of mutual independence to n events, we can say that
a collection of events A1, . . . , An are mutually independent if and only if for
all collections of events S ⊆ {1, . . . , n},

P
(⋂
i∈S

Ai

)
=
∏
i∈S

P (Ai).

We also can define conditional independence, which says that A and B are
conditionally independent given C if and only if

P (A ∩B|C) = P (A|C)P (B|C).

Probability & Random Processes | S. Pohland



Chapter 2

Sequential Experiments

2.1 Counting Methods
Given n total objects, there are n! permutations of those objects. Consider a
set of n total objects, and suppose we want to sample k ≤ n of those objects.
If we choose k out of the n objects without replacement, then there are (n)k
permutations of the objects we choose, where (n)k is defined as

(n)k =
n!

(n− k)!
.

If we are not interested in the order in which the k objects are chosen, then we
say there are

(
n
k

)
ways to choose the k objects, where

(
n
k

)
is defined as(

n

k

)
=

(n)k
k!

=
n!

k!(n− k)!
.

A partition of a set of n objects is a set of m groups each containing ni objects
such that n = n1 + . . . + nm. The number of ways to chose ni objects of each
of the m groups from the set of n total objects is(

n

n1, . . . , nm

)
=

n!

n1!n2! . . . nm!
.

Now consider the set of n total objects, and suppose we want to sample k ≤ n
of those objects and replace each object as we sample them. Now there are nk
ways to choose an ordered sample of the objects.

2.2 Independent Trials
Independent trials are identical subexperiments in a sequential experiment.
Consider an experiment of n independent trials, where the probability of success
in each trial is p. Let an outcome of the experiment be defined as a particular

10



CHAPTER 2. SEQUENTIAL EXPERIMENTS

sequence of successes and failures, resulting in a total of n1 successes and n2
failures, where n1 + n2 = n. The probability of one particular outcome is

pn1(1− p)n2 .

There are
(
n
n1

)
=
(
n
n2

)
possible outcomes that include n1 successes and n2 =

n − n1 failures. Therefore, the probability of an experiment of n trials, each
with probability of success p, resulting in n1 successes is(

n

n1

)
pn1(1− p)n−n1 .

Now we can generalize this result to experiments with more than two possible
outcomes. Consider an experiment which has a sample space Ω = {s1, . . . , sm}
and the associated probability law P (si) = pi. For n = n1+. . .+nm independent
trials, the probability of ni occurrences of si for i ∈ {1, . . . ,m} is given by(

n

n1, . . . , nm

) m∏
i=1

pnii .

2.2.1 Binomial Theorem
As an aside, it is useful to note a related concept, which is sometimes referred
to as the binomial theorem or the binomial expansion. According to the
binomial theorem, we can express (x+ y)n for some integer n ≥ 0 as

(x+ y)n =

n∑
k=0

(
n

k

)
xky(n−k).

Probability & Random Processes | S. Pohland
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Random Variables
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Chapter 3

Discrete Random Variables

3.1 Discrete Random Variable
Given an experiment with probability measure P defined on a sample space Ω,
a random variable is a function that assigns a real number to each outcome.
A random variable is a real-valued function X : Ω→ R defined such that

{X = x} = {ω ∈ Ω : X(ω) = x}.

In this formulation, the variable x is called a realization of the random variable
X. A random variable X is discrete if the range of X, which we denote X , is a
countable set. This set may contain a finite or an infinite number of values.

3.2 Probability Mass Function
The frequencies with which a random variable takes on different values is de-
scribed by its probability mass function (PMF). The PMF, pX : X → [0, 1],
associated with a discrete random variable X is defined as

pX(x) = P ({X = x}) = P ({ω ∈ Ω : X(ω) = x}).

From the probability axioms, the PMF satisfies the following properties:

1. pX(x) ≥ 0, ∀x ∈ X

2.
∑
x∈X pX(x) = 1

3. P (A) =
∑
x∈A pX(x), ∀A ∈ F

3.3 Cumulative Distribution Function
The frequencies with which a random variable takes on different values can also
be described by its cummulative distribution function (CDF). The CDF,

13



CHAPTER 3. DISCRETE RANDOM VARIABLES

FX : X → [0, 1], associated with a discrete random variable X is defined as

FX(x) = P ({X ≤ x}) = P ({ω ∈ Ω : X(ω) ≤ x}).

If we assume the range is given by X = {x1, x2, . . .}, where x1 < x2 < . . ., then
the CDF of X satisfies the following properties:

1. FX(x) =
∑
xi≤x pX(xi), ∀x ∈ X

2. FX(−∞) := limx→−∞ FX(x) = 0

3. FX(∞) := limx→∞ FX(x) = 1

4. FX(x′) ≥ FX(x), ∀x, x′ ∈ X s.t. x′ ≥ x

5. pX(xi) = FX(xi)− FX(xi − ε), ∀xi ∈ X and some arbitrarily small ε > 0

6. FX(x) = FX(xi), ∀x, xi, xi+1 ∈ X s.t. xi < x < xi+1

7. FX(b)− FX(a) = P ({a < X ≤ b}), ∀a, b ∈ X

These properties say that the CDF, FX , starts at zero and increases monoton-
ically to one. Furthermore, there is a discontinuity at each value xi ∈ X , and
the height of the jump is given by pX(xi). Between these discontinuities, the
CDF does not change. Finally, the CDF allows us to determine the probability
that the random variable X takes on a value between two points.

3.4 Expected Value
For a discrete random variable X with PMF pX , the expected value of X is

E[X] =
∑
x∈X

xpX(x).

Given a discrete random variable X with the PMF pX , Y = g(X) is another
discrete random variable with its own PMF, pY , which is defined as

pY (y) =
∑

x:g(x)=y

pX(x).

This says that pY (y) is the sum of probability outcomes X = x for which Y = y.
For these discrete random variables, the expected value of Y can be defined as

E[Y ] =
∑
y∈Y

ypY (y) =
∑
y∈Y

y

 ∑
x:g(x)=y

pX(x)


=
∑
y∈Y

∑
x:g(x)=y

g(x)pX(x) =
∑
x∈X

g(x)pX(x).

Now we can see that we compute E[Y ] without needing to compute pY (y). This
finding is sometimes referred to as the law of the unconscious statistician.

Probability & Random Processes | S. Pohland
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3.4.1 Linearity of Expectation
This law of the unconscious statistician leads us to the linearity of expectation,
which says that for the discrete random variable X and two constants a and b,

E[aX + b] = aE[X] + b.

Proof: From the law of the unconscious statistician,

E[aX + b] =
∑
x∈X

(ax+ b)pX(x) = a
∑
x∈X

xpX(x) + b
∑
x∈X

pX(x)

Using the definition of the expected value for the first term of the sum and the
second property of the PMF for the second term, we get the desired result.

3.4.2 Jensen’s Inequality
Another useful property of expected value is Jensen’s inequality, which says
that for any discrete random variable X and convex function f ,

f
(
E[X]

)
≤ E

[
f(X)

]
.

Proof: According to the first order condition for convexity (see convex opti-
mization notes), if f is a convex function, then

f(y) ≥ f(x) + f ′(x)(y − x), ∀x, y ∈ domf.

If we let y = X and x = E[X], then this inequality becomes

f(X) ≥ f(E[X]) + f ′(E[X])(X − E[X]).

Taking the expectation of both sides and using the linearity of expectation,

E[f(X)] ≥ E
[
f(E[X]) + f ′(E[X])(X − E[X])

]
= f(E[X]) + f ′(E[X])(E[X]− E[X])

= f(E[X]).

3.4.3 Tail Sum Formula
The tail sum formula for expectation says that for a non-negative, integer-valued
random variable X, the expected value is given by

E[X] =

∞∑
k=1

P ({X ≥ k}).

Proof: From the definition of the expected value, we know

E[X] =
∑
x∈X

xpX(x) =
∑
x∈X

xP ({X = x}).

Probability & Random Processes | S. Pohland
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If we assume the X is non-negative and integer-valued, then

E[X] =

∞∑
x=1

xP ({X = x}) =

∞∑
x=1

x∑
k=1

P ({X = x})

=

∞∑
k=1

∞∑
x=k

P ({X = x}) =

∞∑
k=1

P ({X ≥ k}).

3.5 Variance & Standard Deviation
For a discrete random variable X, the variance measures the dispersion of its
sample values around its expected value, E[X]. The variance of X is defined as

Var(X) = E
[(
X − E[X]

)2]
.

We can also express the variance of X using a different formula:

Var(X) = E[X2]−
(
E[X]

)2
.

Proof: Using the properties of expectation discussed in the previous section,
we can show that these expressions are equivalent:

Var(X) = E
[(
X − E[X]

)2]
=
∑
x∈X

(
x− E[X]

)2
pX(x)

=
∑
x∈X

(
x2 − 2xE[X] +

(
E[X]

)2)
pX(x)

=
∑
x∈X

x2pX(x)− 2E[X]
∑
x∈X

xpX(x) +
(
E[X]

)2 ∑
x∈X

pX(x)

= E[X2]− 2
(
E[X]

)2
+
(
E[X]

)2
= E[X2]−

(
E[X]

)2
For the random variable X and two constants a and b, the variance satisfies

Var(aX + b) = a2Var(X).

Proof: We can prove this using the second expression for the variance:

Var(aX + b) = E[(aX + b)2]−
(
E[aX + b]

)2
= E[a2X2 + 2abX + b2]−

(
E[aX + b]

)2
= a2E[X2] + 2abE[X] + b2 −

(
aE[X] + b

)2
= a2E[X2] + 2abE[X] + b2 − a2(E[X])2 − 2abE[X]− b2

= a2E[X2]− a2(E[X])2

= a2
(
E[X2]− (E[X])2

)
= a2Var(X)

Probability & Random Processes | S. Pohland
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Another measure of the dispersion of the sample values of a random variable
about its expected value is standard deviation, which is defined as

σX =
√

Var(X).

3.6 Moment Generating Function
Another probability model for the discrete random variable X is the moment
generating function (MGF), which is defined for real values of s as

φX(s) = E[esX ] =
∑
x∈X

esxpX(x).

The set of values of s for which φX(s) exists is called the region of conver-
gence. MGFs can be used to discuss moments of random variables. A discrete
random variable X with MGF φX has the nth moment

E[Xn] =
dn

dsn
φX(s)

∣∣∣∣∣
s=0

.

3.7 Common Discrete Distributions
There are several common types of discrete random variables with well-known
distributions. Some common discrete distributions are discussed in this section.

3.7.1 Indicator Random Variable
An indicator random variable X for an event A ∈ F is defined as

X = 1A(x) =

{
1 if x ∈ A
0 otherwise

.

The expected value for this random variable is given by

E[X] = P (A).

3.7.2 Uniform Random Variable
The PMF of a random variable X ∼ Uniform(a, b) for a < b is given by

pX(x) =

{
1

b−a+1 if x ∈ {a, a+ 1, . . . , b− 1, b}
0 otherwise

.

Uniform random variables are used if every possible outcome has the same
probability. The expected value and variance for this random variable are

E[X] =
a+ b

2
and Var(X) =

(b− a)(n− a+ 2)

12
.
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The moment generating function for this random variable is given by

φX(s) =
esk − es(l+1)

1− es
.

All these expressions can be derived from their definitions using the PMF of X.

3.7.3 Bernoulli Random Variable
The PMF of a random variable X ∼ Bernoulli(p) for 0 ≤ p ≤ 1 is given by

pX(x) =


1− p if x = 0

p if x = 1

0 otherwise
.

Bernoulli random variables are used to represent to probability of a success or
failure in a single binary experiment, where p is the probability of success. The
expected value and variance for this random variable are given by

E[X] = p and Var(X) = p(1− p).

The moment generating function for this random variable is given by

φX(s) = 1− p+ pes.

All these expressions can be derived from their definitions using the PMF of X.

3.7.4 Binomial Random Variable
The PMF of a random variable X ∼ Binomial(n, p) for n ∈ Z and 0 ≤ p ≤ 1 is

pX(x) =

{(
n
x

)
px(1− p)n−x if x = 0, . . . , n

0 otherwise
.

Binomial random variables are used to represent the probability of some number
of successes in n binary trials, where p is the probability of success in any given
trial. The expected value and variance for this random variable are given by

E[X] = np and Var(X) = np(1− p).

The moment generating function for this random variable is given by

φX(s) =
(
1− p+ pes

)n
.

All these expressions can be derived from their definitions using the PMF of X.
If X1, . . . , Xn are n independent and identically distributed (i.i.d.) (See Section
5.6.1) random variables such that Xi ∼ Bernoulli(p) for i = {1, . . . , n}, then

X =

n∑
i=1

Xi.

If X ∼ Binomial(n, p) and Y ∼ Binomial(m, p) are independent random vari-
ables, then by construction, X + Y ∼ Binomial(n+m, p).
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3.7.5 Geometric Random Variable
The PMF of a random variable X ∼ Geometric(p) for 0 ≤ p ≤ 1 is given by

pX(x) =

{
p(1− p)x−1 if x = 1, 2, . . .

0 otherwise
.

Geometric random variables are used to represent to the number of failed trials
before the first success, where p is the probability of success in any given trial.
The expected value and variance for this random variable are given by

E[X] =
1

p
and Var(X) =

1− p
p2

.

The moment generating function for this random variable is given by

φX(s) =
pes

1− (1− p)es
.

All these expressions can be derived from their definitions using the PMF of X.
If X1, . . . , Xn are n independent and identically distributed (i.i.d.) (See Section
5.6.1) random variables such that Xi ∼ Bernoulli(p) for i = {1, . . . , n}, then

X = min{k ≥ 1 : Xk = 1}

The geometric random variable X is memoryless, which means

P ({X > t+ s|X > s}) = P ({X > t}), ∀s, t ≥ 0.

3.7.6 Poisson Random Variable
The PMF of a random variable X ∼ Poisson(λ) for λ > 0 is given by

pX(x) =

{
λxe−λ

x! if x = 0, 1, . . .

0 otherwise
.

Poisson random variables are often used to represent the number of discrete
events that occur within a countably infinite interval of time. The expected
value and variance for this random variable are given by

E[X] = λ and Var(X) = λ.

These expressions can be derived from their definitions using the PMF of X. By
construction of the Poisson distribution, if X ∼ Poisson(λ) and Y ∼ Poisson(µ)
are independent random variables, then the sum of the random variables has
the distribution X + Y ∼ Poisson(λ+ µ).
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3.7.7 Pascal Random Variable
The PMF of a random variable X ∼ Pascal(k, p) is given by

pX(x) =

{(
x−1
k−1
)
px(1− p)x−k if x = 1, 2, . . .

0 otherwise
.

The expected value and variance for this random variable are given by

E[X] =
k

p
and Var(X) =

k(1− p)
p2

.

These expressions can be derived from their definitions using the PMF of X.
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Chapter 4

Continuous Random
Variables

4.1 Continuous Random Variable
Previously, we said that given an experiment with probability measure P defined
on a sample space Ω, a random variable is a function that assigns a real number
to each outcome in the sample space of the experiment. We defined a random
variable as a real-valued function X : Ω→ R such that

{X = x} = {ω ∈ Ω : X(ω) = x}.

A random variable X is continuous if the range of X, which we denote X , is not
a countable set. Instead, the range consists of one of more intervals of values.
Because the probability function is defined over an uncountable range of values,
the probability that X takes on a value of exactly x is zero:

P ({X = x}) = 0.

For continuous random variables, we consider the probability that it takes on a
value within an interval, rather than taking on an exact value.

4.2 Cumulative Distribution Function
The frequencies with which a continuous random variable takes on different
values can be described by its cumulative distribution function (CDF).
The CDF, FX : X → [0, 1], associated with a random variable X is defined as

FX(x) = P ({X ≤ x}) = P ({ω ∈ Ω : X(ω) ≤ x}).

The CDF of a continuous random variable satisfies the following properties:

1. FX(−∞) := limx→−∞ FX(x) = 0
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2. FX(∞) := limx→∞ FX(x) = 1

3. FX(x′) ≥ FX(x), ∀x, x′ ∈ X s.t x′ ≥ x

4. FX(b)− FX(a) = P ({a < X ≤ b})

Note that these properties also hold if X is a discrete random variable. However,
if X is discrete, then the CDF has discontinuities that must satisfy additional
properties. For a continuous random variable, the CDF is continuous, so it does
not need to satisfy these additional properties.

4.3 Probability Density Function
The frequencies with which a continuous random variable takes on different
values can also be described by its probability density function (PDF).
The PDF, fX , of a random variable X is defined as the derivative of its CDF:

fX(x) =
d

dx
FX(x).

The value of fX(x) indicates the probability that X is near a sample value x
and is a good indication of the likely value of observations. The PDF of the
continuous random variable X satisfies the following properties:

1. fX(x) ≥ 0, ∀x ∈ X

2.
∫
X fX(x)dx = 1

3. FX(x) =
∫ x
−∞ fX(t)dt, ∀x ∈ X

4.
∫ b
a
fX(x)dx = P ({a < X ≤ b}), ∀a, b ∈ X

4.4 Expected Value
Similar to the discrete case, for a continuous random variable X with the prob-
ability density function (PDF) fX , the expected value of X is defined as

E[X] =

∫
X
xfX(x)dx.

Given a continuous random variable X with the PDF fX , Y = g(X) is another
random variable, but it is not necessarily continuous, so it may not have a
well-defined PDF. However, similar to as we showed in the discrete case, the
expected value of Y can be defined in terms of the distribution of X as

E[Y ] =

∫
X
g(x)fX(x).

As in the discrete case, we can compute E[Y ] without needing to compute fY (y),
which is called the law of the unconscious statistician.
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4.4.1 Linearity of Expectation
In the same way as we saw in the discrete case, the law of the unconscious
statistician leads us to the linearity of expectation, which says that for the
continuous random variable X and two constants a and b,

E[aX + b] = aE[X] + b.

Proof: From the law of the unconscious statistician,

E[aX + b] =

∫
X

(ax+ b)fX(x)dx = a

∫
X
xfX(x)dx+ b

∫
X
fX(x)dx

Using the definition of the expected value for the first term of the sum and the
second property of the PDF for the second term, we get the desired result.

4.4.2 Jensen’s Inequality
Jensen’s inequality also holds for continuous random variables and says that
for any continuous random variable X and convex function f ,

f
(
E[X]

)
≤ E

[
f(X)

]
.

The proof for this inequality is exactly the same as in the discrete case.

4.4.3 Tail Sum Formula
The tail sum formula for expectation also applies to continuous random variables
and says that for a non-negative random variable X, the expected value is

E[X] =

∫ ∞
0

P ({X ≥ t}) dt =

∫ ∞
0

(
1− FX(t)

)
dt.

More more information about the tail sim formula, see: https://stat.uiowa.
edu/sites/stat.uiowa.edu/files/cae/Lo_Expectation.pdf

4.5 Variance & Standard Deviation
For a continuous random variable X, its variance measures the dispersion of
sample values of X around its expected value E[X]. The variance of X is

Var(X) = E
[(
X − E[X]

)2]
.

As in the discrete case, we can also express the variance as

Var(X) = E[X2]−
(
E[X]

)2
.
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Proof: Using the properties of expectation discussed in the previous section,
we can show that these expressions are equivalent:

Var(X) = E
[(
X − E[X]

)2]
=

∫
X

(
x− E[X]

)2
fX(x)dx

=

∫
X

(
x2 − 2xE[X] +

(
E[X]

)2)
fX(x)dx

=

∫
X
x2fX(x)− 2E[X]

∫
X
xfX(x) +

(
E[X]

)2 ∫
X
fX(x)

= E[X2]− 2
(
E[X]

)2
+
(
E[X]

)2
= E[X2]−

(
E[X]

)2
An important property of variance, which we showed in the discrete case, is that
for the continuous random variable X and two constants a and b,

Var(aX + b) = a2Var(X).

The proof for the statement is the same as was shown for the discrete case.
Another measure of the dispersion of the sample values of a random variable
about its expected value is standard deviation, which is defined as

σX =
√

Var(X)

4.6 Moment Generating Function
Another probability model for the continuous random variableX is themoment
generating function (MGF), which is defined for real values of s as

φX(s) = E[esX ] =

∫
X
esxfX(x)dx.

The set of values of s for which φX(s) exists is called the region of conver-
gence. A continuous random variable X with MGF φX(s) has the nth moment

E[Xn] =
dn

dsn
φX(s)

∣∣∣∣∣
s=0

.

4.7 Common Continuous Distributions
There are several common types of continuous random variables with well-known
distributions. Some common continuous distributions are discussed here.
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4.7.1 Uniform Random Variable
The PDF of a random variable X ∼ Uniform(a, b) for a < b is given by

fX(x) =

{
1
b−a if a ≤ x < b

0 otherwise
.

Uniform random variables are used to model situations in which there is an
equal chance of finding an outcome x in any given interval on (a, b). The CDF
for the uniform random variable X is given by

FX(x) =


0 if x ≤ a
x−a
b−a if a < x ≤ b
1 if x > b

.

The expected value and variance for this random variable are

E[X] =
a+ b

2
and Var(X) =

(b− a)2

12
.

The moment generating function for this random variable is given by

φX(s) =
ebs − eas

s(b− a)
.

All these expressions can be derived from their definitions using the PDF of X.

4.7.2 Exponential Random Variable
The PDF of a random variable X ∼ Exponential(λ) for λ > 0 is given by

fX(x) =

{
0 if x < 0

λe−λx if x ≥ 0
.

Exponential random variables are used to model the amount of time that passes
before an event occurs. The CDF for the exponential random variable X is

FX(x) =

{
0 if x < 0

1− e−λx if x ≥ 0
.

The expected value and variance for this random variable are

E[X] =
1

λ
and Var(X) =

1

λ2
.

The moment generating function for this random variable is given by

φX(s) =
λ

λ− s
.

All these expressions can be derived from their definitions using the PDF of X.
The exponential random variable X is memoryless, which means

P ({X > t+ s|X > s}) = P ({X > t}), ∀s, t ≥ 0.
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4.7.3 Erlang Random Variable
The PDF of a random variable X ∼ Erlang(n, λ) for λ > 0 and integer n ≥ 1 is

fX(x) =

{
0 if x < 0
λnxn−1e−λx

(n−1)! if x ≥ 0
.

The expected value and variance for this random variable are given by

E[X] =
n

λ
and Var(X) =

n

λ2
.

These expressions can be derived from their definitions using the PDF of X. An
Erlang random variable with parameters λ > 0 and n = 1 is an exponential
random variable with parameter λ.

4.7.4 Gaussian Random Variable
The PDF of a random variable X ∼ N(µ, σ2) for real number µ and σ > 0 is

fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

The graph of fX(x) has a bell shape and is centered at µ. The parameter σ
reflects the width of the bell such that smaller values of σ correspond to a narrow
bell shape with a high peak and larger values of σ correspond to a wide bell
with a low peak. The height of the peak is given by 1/

√
2πσ2. The expected

value and variance for this random variable are given by

E[X] = µ and Var(X) = σ2.

The moment generating function for this random variable is given by

φX(s) = exp
(
sµ+

1

2
s2σ2

)
.

All these expressions can be derived from their definitions using the PDF of X.

4.7.5 Standard Normal Random Variable
The standard normal random variable Z ∼ N(0, 1) is the Gaussian random
variable with zero mean and unit variance, which has the PDF

fZ(z) =
1√
2π
e−z

2/2.

To prove that this is actually a valid PDF, first notice that this function is
non-negative for all values of z. Now we need to show

∫∞
−∞ fZ(z)dz = 1. To do
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so, we will consider the square of the given integral:(∫ ∞
−∞

fZ(z)dz

)2

=

(∫ ∞
−∞

fZ(u)du

)(∫ ∞
−∞

fZ(v)dv

)

=

∫ ∞
−∞

∫ ∞
−∞

fZ(u)fZ(v)dudv

=

∫ ∞
−∞

∫ ∞
−∞

( 1√
2π
e−u

2/2
)( 1√

2π
e−v

2/2
)
dudv

=

∫ ∞
−∞

∫ ∞
−∞

1

2π
e−(u

2+v2)/2dudv

=

∫ 2π

0

∫ ∞
0

1

2π
e−r

2/2rdrdθ

=

∫ 2π

0

1

2π
dθ

∫ ∞
0

e−r
2/2rdr

=
1

2π
(2π)

∫ ∞
0

e−tdt

= 1 X

The CDF for the standard normal random variable Z is given by

φ(z) := FZ(z) =
1√
2π

∫ z

−∞
e−u

2/2du.

The CDF for Z satisfies an important symmetrical property:

φ(−z) = 1− φ(z).

The standard normal complementary CDF is given by

Q(z) = 1− φ(z) =
1√
2π

∫ ∞
z

e−u
2/2du.

To transform a Gaussian random variable X ∼ N(µ, σ2) into a standard normal
random variable Z ∼ N(0, 1), we can define Z as

Z =
X − µ
σ

.

We can then define the probability distributions of the Gaussian random variable
X with mean µ and standard deviation σ in terms of the standard normal CDF:

FX(x) = φ

(
x− µ
σ

)
and P ({a < X ≤ b}) = φ

(
b− µ
σ

)
− φ

(
a− µ
σ

)
.
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Chapter 5

Multiple Random Variables

5.1 Joint Probability Mass Function

5.1.1 Two Random Variables
Let X and Y be two discrete random variables defined on the same probability
space, (Ω,F , P ). Suppose the range of X and Y are X and Y respectively.
Their joint probability mass function (PMF) describes the frequencies of
their joint outcomes. The joint PMF of X and Y is defined as

pXY (x, y) = P ({X = x, Y = y})
= P ({ω ∈ Ω : X(ω) = x, Y (ω) = y})
= P ({ω ∈ Ω : X(ω) = x} ∩ {ω ∈ Ω : Y (ω) = y}).

The joint probability mass function satisfies the following properties:

1. pXY (x, y) ≥ 0, ∀x ∈ X , y ∈ Y

2.
∑
x∈X

∑
y∈Y pXY (x, y) = 1

3. P (A) =
∑

(x,y)∈A pXY (x, y), ∀A ∈ F

For random variables X and Y with joint PMF pXY , the marginal PMFs are
probability models for the individual random variables and are defined as

pX(x) =
∑
y∈Y

pXY (x, y) and pY (y) =
∑
x∈X

pXY (x, y).

5.1.2 Multiple Random Variables
We can also expand the definition of the joint probability mass function (PMF)
to n random variables. Let X1, . . . , Xn be n discrete random variables defined
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on the same probability space, (Ω,F , P ). Suppose the range of Xi is Xi for
i = 1, . . . , n. For the random variables X1, . . . , Xn, the joint PMF is

pX1...Xn(x1, . . . , xn) = P ({X1 = x1, . . . , Xn = xn}).

For n random variables, the joint PMF satisfies the following properties:

1. pX1...Xn(x1, . . . , xn) ≥ 0, ∀x1 ∈ X1, . . . , xn ∈ Xn
2.
∑
x1∈X1

. . .
∑
xn∈Xn pX1...Xn(x1, . . . , xn) = 1

3. P (A) =
∑

(x1,...,xn)∈A pX1...Xn(x1, . . . , xn), ∀A ∈ F
Consider four random variablesX1, X2, X3, andX4 with joint PMF pX1X2X3X4

.
The marginal PMFs can be computed in the following way:

pX2X3X4
(x2, x3, x4) =

∑
x1∈X1

pX1X2X3X4
(x1, x2, x3, x4)

pX1X4
(x1, x4) =

∑
x2∈X2

∑
x3∈X3

pX1X2X3X4
(x1, x2, x3, x4)

5.2 Joint Cumulative Distribution Function

5.2.1 Two Random Variables
Let X and Y be two random variables defined on the same probability space,
(Ω,F , P ). Suppose the range of X and Y are X and Y respectively. Their joint
cumulative distribution function (CDF) describes the frequencies of their
joint outcomes. The joint CDF of X and Y is defined as

FXY (x, y) = P ({X ≤ x, Y ≤ y})
= P ({ω ∈ Ω : X(ω) ≤ x, Y (ω) ≤ y})
= P ({ω ∈ Ω : X(ω) ≤ x} ∩ {ω ∈ Ω : Y (ω) ≤ y}).

The joint cumulative distribution function (CDF) satisfies several properties:

1. 0 ≤ FXY (x, y) ≤ 1, ∀x ∈ X , y ∈ Y

2. FXY (∞,∞) := limx→∞ limy→∞ FXY (x, y) = 1

3. FXY (x,−∞) := limy→−∞ FXY (x, y) = 0, ∀x ∈ X

4. FXY (−∞, y) := limx→−∞ FXY (x, y) = 0, ∀y ∈ Y

5. FX(x) = FXY (x,∞) := limy→∞ FXY (x, y), ∀x ∈ X

6. FY (y) = FXY (∞, y) := limx→∞ FXY (x, y), ∀y ∈ Y

7. FXY (x1, y1) ≤ FXY (x2, y2), ∀x1, x2 ∈ X , y1, y2 ∈ Y : x1 ≤ x2, y1 ≤ y2
8. P ({x1 < X ≤ x2, y1 < Y ≤ y2}) =

FXY (x2, y2)− FXY (x2, y1)− FXY (x1, y2) + FXY (x1, y1),

∀x1, x2 ∈ X , y1, y2 ∈ Y s.t. x1 ≤ x2 and y1 ≤ y2
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5.2.2 Multiple Random Variables
We can also expand the definition of the joint cumulative distribution function
(CDF) to n random variables. Let X1, . . . , Xn be n random variables defined
on the same probability space, (Ω,F , P ). The joint CDF is defined as

FX1...Xn(x1, . . . , xn) = P ({X1 ≤ x1, . . . , Xn ≤ xn}).

The joint CDF satisfies similar properties as in the case of two random variables.

5.3 Joint Probability Density Function

5.3.1 Two Random Variables
Let X and Y be two continuous random variables defined on the same probabil-
ity space, (Ω,F , P ). Suppose the range of X and Y are X and Y respectively.
The joint probability density function (PDF) of the continuous random
variables X and Y is defined in terms of their joint CDF as

fXY (x, y) =
∂2

∂x∂y
FXY (x, y).

The joint PDF of random variables X and Y satisfies the following properties:

1. fXY (x, y) ≥ 0, ∀x ∈ X , y ∈ Y

2.
∫
X
∫
Y fXY (x, y)dxdy = 1

3. FXY (x, y) =
∫ x
−∞

∫ y
−∞ fXY (u, v)dudv

4. P (A) =
∫∫
A
fXY (x, y)dxdy, ∀A ∈ F

For random variables X and Y with joint PDF fXY , the marginal PDFs are
probability models for the individual random variables and are defined as

fX(x) =

∫ ∞
−∞

fXY (x, y)dy and fY (y) =

∫ ∞
−∞

fXY (x, y)dx.

5.3.2 Multiple Random Variables
We can also expand the definition of the joint probability density function (PDF)
to n random variables. LetX1, . . . , Xn be n continuous random variables defined
on the same probability space, (Ω,F , P ). Suppose the range of Xi is Xi for
i = 1, . . . , n. For the random variables X1, . . . , Xn, the joint PDF is

fX1...Xn(x1, . . . , xn) =
∂n

∂x1 . . . ∂xn
FX1...Xn(x1, . . . , xn)

For n random variables, the joint PDF satisfies the following properties:
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1. fX1...Xn(x1, . . . , xn) ≥ 0, ∀x1 ∈ X1, . . . , xn ∈ Xn

2.
∫
X1
. . .
∫
Xn fX1...Xn(x1, . . . , xn)dx1 . . . dxn = 1

3. FX1...Xn(x1, . . . , xn) =
∫ x1

−∞ . . .
∫ xn
−∞ fX1...Xn(u1, . . . , un)du1 . . . dun

4. P (A) =
∫
. . .
∫
A
fX1...Xn(x1, . . . , xn)dx1 . . . dxn, ∀A ∈ F

Consider four random variablesX1,X2,X3, andX4 with joint PDF is fX1X2X3X4 .
The marginal PDFs can be computed in the following way:

fX2X3X4(x2, x3, x4) =

∫
X1

fX1X2X3X4(x1, x2, x3, x4)dx1

fX1X4
(x1, x4) =

∫
X2

∫
X3

fX1X2X3X4
(x1, x2, x3, x4)dx2dx3

5.4 Expected Value

5.4.1 Discrete Random Variables
Given a two discrete random variables X and Y with joint PMF pXY , we can
define a new random variable W = g(X,Y ). The expected value of W is

E[W ] =
∑
x∈X

∑
y∈Y

g(x, y)pXY (x, y).

Using this definition of the expected value, we can show that the expectation of
a sum of two discrete random variables is the sum of its expected values:

E[X + Y ] = E[X] + E[Y ].

Proof: We can directly prove this property for two discrete random variables:

E[X + Y ] =
∑
x∈X

∑
y∈Y

(x+ y)pXY (x, y)

=
∑
x∈X

∑
y∈Y

xpXY (x, y) +
∑
y∈Y

∑
x∈X

ypXY (x, y)

=
∑
x∈X

x

∑
y∈Y

pXY (x, y)

+
∑
y∈Y

y

(∑
x∈X

pXY (x, y)

)

=
∑
x∈X

xpX(x) +
∑
y∈Y

ypY (y)

= E[X] + E[Y ]
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5.4.2 Continuous Random Variables
Given a two continuous random variables X and Y with joint PDF fXY , we
can define a new random variable W = g(X,Y ). The expected value of W is

E[W ] =

∫
X

∫
Y
g(x, y)fXY (x, y)dxdy.

As for the discrete case, the expectation of a sum of two continuous random
variables is the sum of its expected values:

E[X + Y ] = E[X] + E[Y ].

Proof: We can directly prove this for two continuous random variables:

E[X + Y ] =

∫
X

∫
Y

(x+ y)fXY (x, y)dxdy

=

∫
X

∫
Y
xfXY (x, y)dxdy +

∫
X

∫
Y
yfXY (x, y)dxdy

=

∫
X
x

(∫
Y
fXY (x, y)dy

)
dx+

∫
Y
y

(∫
X
fXY (x, y)dx

)
dy

=

∫
X
xfX(x)dx+

∫
Y
yfY (y)dy

= E[X] + E[Y ]

5.5 Variance, Covariance, & Correlation
Previously, we considered the variance as a measure of the dispersion of sample
values for a single random variable. We can also consider the variance of multiple
random variables. This leads to two related metrics: covariance and correlation.

5.5.1 Variance
For any two random variables X and Y , the variance of their sum can be
expressed in terms of the variances of the individual variables as

Var(X + Y ) = Var(X) + Var(Y ) + 2E
[(
X − E[X]

)(
Y − E[Y ]

)]
.

Probability & Random Processes | S. Pohland



CHAPTER 5. MULTIPLE RANDOM VARIABLES

Proof: We can use the definition of the variance to show this property:

Var(X + Y ) = E
[(
X + Y − E[X + Y ]

)2]
= E

[(
X + Y − E[X]− E[Y ]

)2]
= E

[
X2+Y 2+

(
E[X]

)2
+
(
E[X]

)2
+2XY−2XE[X]−2Y E[X]−2XE[Y ]−2Y E[Y ]+2E[X]E[Y ]

]
= E

[(
X − E[X]

)2
+
(
Y − E[Y ]

)2
+ 2
(
X − E[X]

)(
Y − E[Y ]

)]
= E

[(
X − E[X]

)2]
+ E

[(
Y − E[Y ]

)2]
+ 2E

[(
X − E[X]

)(
Y − E[Y ]

)]
= Var(X) + Var(Y ) + 2E

[(
X − E[X]

)(
Y − E[Y ]

)]
5.5.2 Covariance
The last term in the equation above is called the covariance and is denoted:

σXY := Cov(X,Y ) = E
[(
X − E[X]

)(
Y − E[Y ]

)]
.

The covariance describes how the pair of random variables, X and Y , vary
together. If the covariance is positive, then as X increases, Y generally increases
as well. If the covariance is negative, then as X increases, Y generally decreases.
If the covariance is zero, then X and Y are said to be uncorrelated. The
covariance satisfies the following useful linearity property:

Cov

 n∑
j=1

AijXj + bi,

n∑
l=1

AklXl + bk


= Cov

 n∑
j=1

AijXj ,

n∑
l=1

AklXl


=

n∑
j=1

n∑
l=1

AijAklCov(Xj , Xl)

=

n∑
j=1

AijAkjVar(Xj) +
∑

1≤j<l≤n

AijAklCov(Xj , Xl)

5.5.3 Correlation Coefficient
The correlation coefficient is a normalized version of the covariance, which
indicates the relationship between two random variables, regardless of the mea-
surement units. While the unit of the covariance is the product of the units of
X and Y , the correlation coefficient is dimensionless and is unaffected by scale
changes. The correlation coefficient for two random variables X and Y is

ρXY :=
Cov(X,Y )√
Var(X)Var(Y )

=
σXY
σXσY

.
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The correlation coefficient, ρXY , is restricted to values between −1 and 1. If
ρXY is positive, there is a positive correlation between X and Y . Similarly, if
it is negative, then there is a negative correlation. If the correlation coefficient
is zero, then there is no correlation. If the magnitude of ρXY is close to zero,
then the random variables are only weakly correlated. If the magnitude of ρXY
is close to one, then the random variables are highly correlated. If it is equal to
one, then there is a linear relationship between the two variables.

5.5.4 Correlation
Another metric used to describe the relationship between two random variables
is correlation. The correlation between random variables X and Y is

rXY := E[XY ] = Cov(X,Y ) + E[X]E[Y ].

If the correlation between two random variables, X and Y , is zero, then X and
Y are said to be orthogonal.

5.6 Independent Random Variables

5.6.1 Discrete Random Variables
Two discrete random variables X and Y , with corresponding ranges X and Y,
are considered to be independent if and only if

pXY (x, y) = pX(x)pY (y), ∀x ∈ X , y ∈ Y.

Similarly, n discrete random variables X1, . . . , Xn, with corresponding ranges
X1, . . . ,Xn, are considered to be independent if and only if

pX1...Xn(x1, . . . , xn) =

n∏
i=1

pXi(xi), ∀xi ∈ Xi, i = 1, . . . , n.

These variables are said to be independent and identically distributed
(i.i.d.) if and only if (1) the random variables are independent and (2) all of
the random variables have the same PMF, which we denote pX , meaning

pX1...Xn(x1, . . . , xn) =

n∏
i=1

pX(xi).

5.6.2 Continuous Random Variables
Two continuous random variables X and Y , with corresponding ranges X and
Y, are considered to be independent if and only if

fXY (x, y) = fX(x)fY (y),∀x ∈ X , y ∈ Y.
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Similarly, n continuous random variablesX1, . . . , Xn, with corresponding ranges
X1, . . . ,Xn, are considered to be independent if and only if

fX1...Xn(x1, . . . , xn) =

n∏
i=1

fXi(xi), ∀xi ∈ Xi, i = 1, . . . , n.

These variables are said to be independent and identically distributed
(i.i.d.) if and only if (1) the random variables are independent and (2) all of
the random variables have the same PDF, which we denote fX , meaning

fX1...Xn(x1, . . . , xn) =

n∏
i=1

fX(xi)

5.6.3 Independence Properties
For two independent variables X and Y , the following properties hold:

1. E[g(X)h(Y )] = E[g(X)]E[h(Y )]

2. rXY = E[XY ] = E[X]E[Y ]

3. Cov(X,Y ) = 0

4. Var(X + Y ) = Var(X) + Var(Y )

Notice that all independent random variables are uncorrelated, but they are
not necessarily orthogonal. Also note that while independence implies that two
random variables are uncorrelated, two uncorrelated random variables are not
necessarily independent.

5.7 Bivariate Gaussian Random Variables
One special class of a pair of random variables is called bivariate Gaussian
random variables. Let X be a Gaussian random variable with mean µX and
standard deviation σX , and let Y be a Gaussian random variable with mean µY
and standard deviation σY . Assume that the correlation coefficient between X
and Y is given by ρXY . If X and Y form a pair of bivariate Gaussian random
variables, then their joint PDF can be expressed as the following:

fXY (x, y) =
1

2πσXσY
√

1− ρ2XY
exp

−
(
x−µX
σX

)2
+
(
y−µY
σY

)2
− 2ρXY (x−µX)(y−µY )

σXσY

2(1− ρ2XY )

 .

Previously, we said two independent variables are uncorrelated but two uncorre-
lated random variables are not necessarily independent. For bivariate Gaussian
random variables, they are uncorrelated if and only if they are independent.
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Another important property of bivariate Gaussian random variables is that a
pair of linear combinations of bivariate Gaussian random variables forms an-
other pair of bivariate Gaussian random variables. If X and Y form a pair
of bivariate Gaussian random variables with parameters (µX , µY , σX , σY , ρXY ),
and the random variables W1 and W2 are given by the linearly independent
equations W1 = a1X + b1Y and W2 = a2X + b2Y , then W1 and W2 form a pair
of bivariate Gaussian random variables such that

(1) E[Wi] = aiµX + biµY ,

(2) Var(Wi) = a2iσ
2
X + b2iσ

2
Y + 2aibiρXY σXσY , and

(3) Cov(W1,W2) = a1a2σ
2
X + b1b2σ

2
Y + (a1b2 + a2b1)ρXY σXσY
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Chapter 6

Derived Random Variables

6.1 Derived Discrete Random Variable

6.1.1 Function of One Random Variable
Given a discrete random variable X with PMF pX and some function g, the
derived random variable Y = g(X) has the PMF given by

pY (y) =
∑

x:g(x)=y

pX(x).

If g is an invertible function, then we can express the PMF as

pY (y) = pX(g−1(y)).

6.1.2 Function of Two Random Variables
We can extend the definition given previously for functions of two random vari-
ables. Given discrete random variables X and Y with PMFs pX and pY respec-
tively, the derived random variable W = g(X,Y ) has the PMF given by

pW (w) =
∑

(x,y):g(x,y)=w

pXY (x, y).

6.1.3 Sums of Independent Random Variables
If X and Y are discrete random variables, then their sum is another discrete
random variable, W = X + Y . If X and Y are independent with PMFs pX and
pY respectively, then the PMF of W is the convolution of pX and pY :

pW (w) = (pX ∗ pY )(w) =

∞∑
k=−∞

pX(k)pY (w − k).
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6.2 Derived Continuous Random Variable

6.2.1 Function of One Random Variable
Given a continuous random variable X with CDF FX and some function g, the
derived random variable Y = g(X) has the CDF given by

FY (y) = P ({Y ≤ y}) = P ({g(X) ≤ y}).

If g is an invertible function, then we can express the CDF as

FY (y) = P ({X ≤ g−1(y)}) = FX(g−1(y)).

Given the CDF of the derived random variable Y , we can find its probability
density function (PDF) by computing the derivative of the CDF:

fY (y) =
d

dy
FY (y).

If g is a linear function with slope a and intercept b, then Y = aX + b. For this
special case, we can use the following identities to derive the CDF and PDF Y :

FY (y) = FX

(y − b
a

)
and fY (y) =

1

a
fX

(y − b
a

)
.

6.2.2 Function of Two Random Variables
We can extend the definition given previously for functions of two random vari-
ables. Given continuous random variables X and Y with CDFs FX and FY
respectively, the derived random variable W = g(X,Y ) has the CDF given by

FW (w) =

∫∫
(x,y):g(x,y)≤w

fXY (x, y)dxdy.

Again, the probability density function (PDF) of W is then given by

fW (w) =
d

dw
FW (w).

6.2.3 Sums of Independent Random Variables
If X and Y are continuous random variables, then their sum is another contin-
uous random variable, W = X+Y . If X and Y are independent with PDFs fX
and fY respectively, then the PDF of W is the convolution of fX and fY :

fW (w) = (fX ∗ fY )(w) =

∫ ∞
−∞

fX(τ)fY (w − τ)dτ
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Chapter 7

Conditional Probability
Models

7.1 Conditioning by an Event

7.1.1 Conditional Probability Mass Function
For a discrete random variable X with PMF pX and an event A with probability
P (A) > 0, the conditional probability mass function (PMF) is defined as

pX|A(x) = P ({X = x|A}) =

{
pX(x)
P (A) if x ∈ A
0 otherwise

.

The conditional PMF satisfies the following properties:

1. pX|A(x) ≥ 0, ∀x ∈ A

2.
∑
x∈A pX|A(x) = 1

3. P (B|A) =
∑
x∈B pX|A(x)

For a discrete random variable X resulting from an experiment with partition
A1, . . . , Am, we can express the PMF of X in terms of its conditional PMF as

pX(x) =

m∑
i=1

pX|Ai(x)P (Ai).

For two discrete random variables X and Y with the joint PMF pXY and an
event A with probability P (A) > 0, the conditional joint PMF is given by

pXY |A(x, y) = P ({X = x, Y = y|A}) =

{
pXY (x,y)
P (A) if (x, y) ∈ A

0 otherwise
.
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7.1.2 Conditional Cumulative Distribution Function
For a random variable X with CDF FX and event A with probability P (A) > 0,
the conditional cumulative distribution function (CDF) is defined as

FX|A(x) = P ({X ≤ x|A}) =

{
FX(x)
P (A) if x ∈ A

0 otherwise
.

For two random variables X and Y with joint CDF FXY and an event A with
probability P (A) > 0, the conditional joint CDF is given by

FXY |A(x, y) = P ({X ≤ x, Y ≤ y|A}) =

{
FXY (x,y)
P (A) if x ∈ A

0 otherwise
.

7.1.3 Conditional Probability Density Function
For a continuous random variable X with PDF fX and conditional CDF FX|A
and an event A with probability P (A) > 0, the conditional probability den-
sity function (PDF) can be derived from the conditional CDF as

fX|A(x) =
d

dx
FX|A(x) =

{
fX(x)
P (A) if x ∈ A
0 otherwise

.

The conditional PDF satisfies the following properties:

1. fX|A(x) ≥ 0, ∀x ∈ A

2.
∫
A
fX|A(x)dx = 1

3. P (B|A) =
∫
B
pX|A(x)dx

For a continuous random variableX resulting from an experiment with partition
A1, . . . , Am, we can express the PDF of X in terms of its conditional PDF as

fX(x) =

m∑
i=1

fX|Ai(x)P (Ai).

For two continuous random variables X and Y with joint PDF fXY and con-
ditional joint CDF FXY |A and an event A with probability P (A) > 0, the
conditional joint PDF is given by

fXY |A(x, y) =
∂2

∂x∂y
FXY |A(x, y) =

{
fXY (x,y)
P (A) if (x, y) ∈ A

0 otherwise
.
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7.1.4 Conditional Expected Value
For a discrete random variable X and an event A with probability P (A) > 0,
the conditional expected value of X is defined as

E[X|A] =
∑
x∈X

xpX|A(x).

If X is a discrete random variable, Y is a random variable defined as Y = g(X),
and A is an event, then the conditional expected value of Y is given by

E[Y |A] = E[g(X)|A] =
∑
x∈X

g(x)pX|A(x).

If X and Y are two discrete random variables, W is defined as W = g(X,Y ),
and A is an event, then the conditional expected value of W is given by

E[W |A] = E[g(X,Y )|A] =
∑
x∈X

∑
y∈Y

g(x, y)pXY |A(x, y).

For a discrete random variable X resulting from an experiment with partition
A1, . . . , Am, the expected value of X can be expressed as

E[X] =

m∑
i=1

E[X|Ai]P (Ai).

For a continuous random variable X and an event A with probability P (A) > 0,
the conditional expected value of X is defined as

E[X|A] =

∫
X
xfX|A(x)dx.

If X is a continuous random variable, Y is defined as Y = g(X), and A is an
event, then the conditional expected value of Y is given by

E[Y |A] = E[g(X)|A] =

∫
X
g(x)fX|A(x)dx.

If X and Y are two continuous random variables, W is defined asW = g(X,Y ),
and A is an event, then the conditional expected value of W is given by

E[W |A] = E[g(X,Y )|A] =

∫
Y

∫
X
g(x, y)fXY |A(x, y)dxdy.

For a continuous random variableX resulting from an experiment with partition
A1, . . . , Am, the expected value of X can be expressed as

E[X] =

m∑
i=1

E[X|Ai]P (Ai).
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7.1.5 Conditional Variance
For a random variable X (discrete or continuous) and an event A with proba-
bility P (A) > 0, the conditional variance of X is defined as

Var(X|A) = E
[(
X − E[X|A]

)2∣∣∣A] = E[X2|A]−
(
E[X|A]

)2
.

The conditional standard deviation is defined in terms of the variance as

σX|A =
√

Var(X|A).

7.2 Conditioning by a Random Variable

7.2.1 Conditional Probability Mass Function
For two discrete random variables X and Y , we can define two conditional
probability mass functions (PMFs), which are given by

pX|Y (x|y) = P ({X = x|Y = y}) =
pXY (x, y)

pY (y)

and

pY |X(y|x) = P ({Y = y|X = x}) =
pXY (x, y)

pX(x)
.

The conditional PMF theorem says that the joint PMF can be expressed as

pXY (x, y) = pX|Y (x|y)pY (y) = pY |X(y|x)pX(x).

If X and Y are independent random variables, then

pX|Y (x|y) = pX(x) and pY |X(y|x) = pY (y)

7.2.2 Conditional Cumulative Distrubtion Function
For two random variablesX and Y , we can define two conditional conditional
cumulative distribution functions (CDFs), which are given by

FX|Y (x|y) = P ({X ≤ x|Y ≤ y})

and

FY |X(y|x) = P ({Y ≤ y|X ≤ x}).
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7.2.3 Conditional Probability Density Function
For two continuous random variables X and Y , two conditional probability
density functions (PDFs) are defined in terms of the conditional CDFs as

fX|Y (x|y) =
d

dx
FX|Y (x|y) =

fXY (x, y)

fY (y)

and

fY |X(y|x) =
d

dy
FY |X(y|x) =

fXY (x, y)

fX(x)
.

The conditional PDF theorem says that the joint PDF can be expressed as

fXY (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x).

If X and Y are independent random variables, then

fX|Y (x|y) = fX(x) and fY |X(y|x) = fY (y).

7.2.4 Conditional Expected Value
If X and Y are two discrete random variables, then the conditional expected
value of X given that Y = y is defined as

E[X|Y = y] =
∑
x∈X

xpX|Y (x|y).

If X and Y are two discrete random variables andW is defined asW = g(X,Y ),
then the conditional expected value of W given Y = y is defined as

E[W |Y = y] = E[g(X,Y )|Y = y] =
∑
x∈X

g(x, y)pX|Y (x|y).

If X and Y are two continuous random variables, then the conditional ex-
pected value of X given taht Y = y is defined as

E[X|Y = y] =

∫
X
xfX|Y (x|y)dx.

If X and Y are two continuous random variables and W is defined as W =
g(X,Y ), then the conditional expected value of W given Y = y is defined as

E[W |Y = y] = E[g(X,Y )|Y = y] =

∫
X
g(x, y)fX|Y (x|y)dx.

If the random variables X and Y are independent, then

E[X|Y = y] = E[X], ∀y ∈ Y and E[Y |X = x] = E[Y ], ∀x ∈ X .
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7.2.5 Iterated Expectation & Tower Property
The conditional expected value E[X|Y ] is a function of the random variable Y
such that if Y = y, then E[X|Y ] = E[X|Y = y]. Because E[X|Y ] is a function
of a random variable, it is also a random variable. To calculate the expected
value of g(X), we can compute the iterated expected value:

E[g(X)] = E
[
E[g(X)|Y ]

]
.

If X is a discrete random variable, then this expected value is given by

E[g(X)] =
∑
y∈Y

E
[
g(X)|Y = y

]
pY (y).

If X is a continuous random variable, then this expected value is given by

E[g(X)] =

∫
Y
E
[
g(X)|Y = y

]
fY (y)dy.

Similar to the iterated expected value, we also have the tower property, which
says that for any two random variables X and Y and any function f ,

E[f(Y )X] = E
[
f(Y )E[X|Y ]

]
.

7.2.6 Conditional Variance
If X and Y are two random variables, the variance of X given that Y = y is

Var(X|Y = y) = E
[(
X − E[X|Y = y]

)2∣∣∣Y = y

]
= E[X2|Y = y]−

(
E[X|Y = y]

)2
.

The conditional variance Var(X|Y ) is a function of the random variable Y such
that if Y = y, then Var(X|Y ) = Var(X|Y = y). Because Var(X|Y ) is a function
of a random variable, it is also a random variable. Using iterated expectation,
we can write the minimum mean-square error (MMSE) of X given Y :

E[Var(X|Y )] = E
[(
X − E[X|Y ]

)2]
.

The law of total variance says that the variance of X can be expressed as

Var(X) = E
[
Var(X|Y )

]
+ Var

(
E[X|Y ]

)
.

Rearranging this equation, we see that we can express the minimum mean-
square error (MMSE) of X given Y as

E[Var(X|Y )] = Var(X)−Var
(
E[X|Y ]

)
.
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Chapter 8

Random Vectors

8.1 Random Vector
A random vector with n dimensions is a concise representation of a set of n
random variables. Often we express the n-dimensional random vector X as

X =

X1

...
Xn

 ,
where each element Xi is a random variable. A realization or sample value of
the random vector X is another vector x, which can be expressed as

x =

x1...
xn

 ,
where the ith element xi is a sample value of the random variable Xi.

8.2 Probability Distributions

8.2.1 Probability Mass Functions
The probability mass function (PMF) for a discrete random vector X is

pX(x) = pX1...Xn(x1, . . . , xn).

If X is a discrete random vector and W = g(X), the PMF of W is given by

pW(w) =
∑

x:g(x)=w

pX(x).
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The joint PMF for a pair of discrete random vectors, X and Y , is defined as

pX,Y(x,y) = pX1...XnY1...Ym(x1, . . . , xn, y1, . . . , ym).

The random vectors X and Y are said to be independent if and only if

pX,Y(x,y) = pX(x)pY(y).

8.2.2 Cumulative Distribution Functions
The cumulative distribution function (CDF) for a random vector X is

FX(x) = FX1...Xn(x1, . . . , xn).

If X is a discrete random vector and W = g(X), the CDF of W is given by

FW(w) =
∑

x:g(x)≤w

pX(x).

If X is a continuous random vector andW = g(X), the CDF ofW is given by

FW(w) =

∫
g(x)≤w

fX(x)dx.

The joint CDF for a pair of random vectors, X and Y , is defined as

FX,Y(x,y) = FX1...XnY1...Ym(x1, . . . , xn, y1, . . . , ym).

8.2.3 Probability Density Functions
The probability density function (PDF) for a continuous random vector X is

fX(x) = fX1...Xn(x1, . . . , xn).

If X is a continuous random vector and the random variable W = g(X) has
the CDF FW, the PDF of W can be determined from the CDF of W :

fW(w) = ∇wFW(w).

The joint PDF for a pair of continuous random vectors, X and Y , is defined as

fX,Y(x,y) = fX1...XnY1...Ym(x1, . . . , xn, y1, . . . , ym).

The random vectors X and Y are said to be independent if and only if

fX,Y(x,y) = fX(x)fY(y).

Probability & Random Processes | S. Pohland



CHAPTER 8. RANDOM VECTORS

8.3 Properties of Random Vectors

8.3.1 Expected Value Vector
The expected value of a random vector is a column vector whose elements are
the expected values of the individual random variables, which we express as

µX = E[X] =

E[X1]
...

E[Xn]

 .
If X is a discrete random vector, its expected value is determined by its PMF:

E[X] =
∑
x1∈X1

. . .
∑

xn∈Xn

xpX(x).

If X is a continuous random vector, its expected value is defined by its PDF:

E[X] =

∫
X1

. . .

∫
Xn
xfX(x)dx1 . . . dxn.

If X is a discrete random vector and Y = g(X), then Y has the expected value

E[Y ] = E[g(X)] =
∑
x1∈X1

. . .
∑

xn∈Xn

g(x)pX(x).

If X is a continuous random vector and Y = g(X), Y has the expected value

E[Y ] = E[g(X)] =

∫
X1

. . .

∫
Xn
g(x)fX(x)dx1 . . . dxn.

When the components of X are all independent, the following property holds:

E[g1(X1) . . . gn(Xn)] =

n∏
i=1

E[gi(Xi)].

8.3.2 Covariance & Correlation Matrices
The covariance of an n-dimensional random vector X is an n × n matrix ΣX
whose (i, j)th element is Cov(Xi, Xj). In vector notation, we write this as

ΣX = E
[(
X − µX

)(
X − µX

)T ]
.

From this definition of the covariance, we can see that the covariance matrix
ΣX is always positive semidefinite (PSD), meaning vTΣXv ≥ 0 for all v ∈ Rn.

The correlation of an n-dimensional random vector X is an n × n matrix RX

whose (i, j)th element is E[XiXj ]. In vector notation, we write this as

RX = E[XXT ].

For a random vector X with correlation matrix RX , covariance matrix ΣX ,
and expected value vector µX , we can write the following relationship:

RX = ΣX + µXµ
T
X .
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8.3.3 Linear Transformation
Consider the n-dimensional random vector X with correlation matrix RX , co-
variance matrix ΣX , and expected value vector µX . If A is an m × n matrix
and b is an m-dimensional vector, then the random vector Y = Ax+ b has the
following mean, correlation matrix, and covariance matrix:

µY = AµX + b

RY = ARXA
T + (AµX)bT + b(AµX)T + bbT

ΣY = AΣXA
T

8.4 Gaussian Random Vectors
The random vector X is a Gaussian random vector with expected value vector
µX and covariance matrix ΣX if and only if its PDF can be expressed as

fX(x) =
1

(2π)n/2
∣∣ΣX

∣∣1/2 exp

(
−1

2
(x− µX)TΣ−1X (x− µX)

)
.

The Gaussian random vectorX has independent components if and only if all of
its components are uncorrelated, meaning Cov(Xi, Xj) = 0 for all i 6= j ∈ [1, n].
Therefore, a Gaussian random vector X has independent components if and
only if ΣX is a diagonal matrix, whose diagonal elements are σ2

i = Var(Xi), i.e.

ΣX = diag(σ2
1 , . . . , σ

2
n) =

σ
2
1

. . .
σ2
n

 .
Consider an n-dimensional Gaussian random variable X with expected value
µX and covariance ΣX . If A is an m × n matrix and b is an m-dimensional
vector, then the random vector Y = AX + b is an m-dimensional Gaussian
random vector with mean vector and covariance matrix given by

µY = AµX + b and ΣY = AΣXA
T .

8.4.1 Standard Normal Random Vector
The n-dimensional standard normal random vector Z is the n-dimensional
Gaussian random vector with expected value vector µZ = 0n and covariance
matrix ΣZ = In. This means each component of Z is a random variable Zi
with an expected value of zero and variance of one. Furthermore, the covariance
between all of the random variables is zero, which implies that all of the random
variables are uncorrelated, and thus independent.

We can easily transform between general Gaussian random vectors and standard
normal random vectors. AssumeX is an n-dimensional Gaussian random vector
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with expected value µX and covariance ΣX . Because the covariance matrix is
postive semidefinite, we can define an n × n matrix A such that AAT = ΣX .
The random vector Z = A−1(X − µX) is an n-dimensional standard normal
random vector. Similarly, given the n-dimensional standard normal random
vector Z, an invertible n × n matrix A and an n-dimensional vector b, the
random vector X = AZ + b is an n-dimensional Gaussian random vector with
expected value µX = b and covariance ΣX = AAT .
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Chapter 9

Concentration Inequalities

9.1 Sample Mean
Let X1, . . . , Xn be independent and identically distributed random samples
drawn from a population with variance σ2 and expected value µ. The sam-
ple mean of this set of n samples is denoted Mn(X) and is defined as

Mn(X) =
1

n

n∑
i=1

Xi.

Note that the sample mean is a random variable because it is a function of
random variables. Its expected value and variance can be expressed as

E[Mn(X)] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n

n∑
i=1

µ =
1

n
(n)µ = µ

and

Var(Mn(X)) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
1

n2

n∑
i=1

σ2 =
1

n
σ2.

The expected value of the sample mean is simply the mean of the population,
and the variance of the sample mean is the variance of the population divided
by the number of samples. As the number of samples approaches infinity, the
variance of the sample mean approaches zero. Therefore, the sample mean
converges to the population mean as the number of samples approaches infinity.

Now suppose that X1, . . . , Xn are correlated random samples drawn from a
population with variance σ2, expected value µ, and correlation coefficient ρ > 0.
For this case, the expected value of the sample mean would not change. However,
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the variance for the sample mean would now be given by

Var(Mn(X)) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2
Var

(
n∑
i=1

Xi

)

=
1

n2
Cov

(
n∑
i=1

Xi,

n∑
i=1

Xi

)

=
1

n2

 n∑
i=1

Var(Xi) +

n∑
i=1

∑
j 6=i

Cov(Xi, Xj)


=

1

n2

 n∑
i=1

σ2 +

n∑
i=1

∑
j 6=i

ρσ2


=

1

n2
(
nσ2 + n(n− 1)ρσ2

)
=

1 + (n− 1)ρ

n
σ2.

Notice that the variance of the sample mean no longer approaches zero as the
number of samples approaches infinity. Therefore, the sample mean may not
converge to the population mean as the number of samples approaches infinity.

9.2 Probability Bounds

9.2.1 Markov Inequality
Theorem: The Markov inequality says that for a non-negative random vari-
able X and a positive constant c > 0, the following inequality holds:

P ({X ≥ c}) ≤ E[X]

c
.

Proof: From the definition of the indicator function, we can write:

1{X ≥ c} =

{
1 if X ≥ c
0 if X < c

c · 1{X ≥ c} =

{
c if X ≥ c
0 if X < c

Now notice that because X is a non-negative random variable,

c · 1{X ≥ c} ≤ X.

Because the expected value function is monotonically increasing,

E[c · 1{X ≥ c}] ≤ E[X]
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From the linearity of expectation, we can see that

c · E[1{X ≥ c}] ≤ E[X].

Because c is strictly positive, we can divide both sides by c, so

E[1{X ≥ c}] ≤ E[X]

c
.

Finally, from our discussion of common discrete distributions, we know the
expected value of an indicator function, which leads us to the desired result:

P ({X ≥ c}) ≤ E[X]

c
.

Extension: Note that there are several other inequalities that can be derived
from the Markov inequality. One useful extension says that for a random vari-
able X with finite variance and E[X] = 0,

P ({X ≥ c}) ≤ E[X2]

E[X2] + c2
, ∀c ≥ 0.

9.2.2 Chebyshev Inequality
Theorem: The Chebyshev inequality says that for any arbitrary random
variable X with expected value µX and variance Var(X) and for an arbitrary
positive constant c > 0, the following inequality holds:

P ({|X − µX | ≥ c}) ≤
Var(X)

c2
.

Proof: This inequality comes directly from the Markov inequality.

9.2.3 Chernoff Bound
Theorem: The Chernoff bound says that that for any arbitrary random
variable X with moment generating function φX(s) and any constant c,

P ({X ≥ c}) ≤ min
s≥0

e−scφX(s).

Proof: This inequality comes directly from the Markov inequality.

It’s interesting to consider the implications of the Chernoff bound for Gaussian
random variables. For the Gaussian random variable X ∼ N(µ, σ2), it says

P ({X ≥ c}) ≤ min
s≥0

{
e−sc · exp

(sµ+ s2σ2

2

)}

= min
s≥0

{
exp
(s(µ− 2c) + s2σ2

2

)}
.
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To find the optimal value, ŝ, that minimizes this objective, we can take the
derivative of the objective with respect to s, plug in ŝ, and set the expression
equal to zero. Following this approach, we get the following result:

exp
( ŝ(µ− 2c) + ŝ2σ2

2

)(µ
2
− c+ σ2ŝ

)
= 0(µ

2
− c+ σ2ŝ

)
= 0

ŝ =
2c− µ

2σ2

Plugging this expression for ŝ into our previous inequality, we get

P ({X ≥ c}) ≤ min
s≥0

{
exp
(s(µ− 2c) + s2σ2

2

)}

= exp
( ŝ(µ− 2c) + ŝ2σ2

2

)
= exp

(− (µ−2c)2
2σ2 + (µ−2c)2

4σ2

2

)
= exp

(
− (µ− 2c)2

8σ2

)
.

Because the Gaussian random variable X is symmetric, we can also write

P ({|X| ≥ c}) ≤ 2 exp
(
− (µ− 2c)2

8σ2

)
.

9.3 Law of Large Numbers

9.3.1 Convergence of Random Variables
There are three commonly used modes of convergence for random variables:

1. Almost Sure Convergence

For a sequence of random variables X1, X2, . . ., we say that Xn converges
to the random variable X almost surely if

P
({

lim
n→∞

Xn = X
})

= 1.

We can equivalently write this expression as

P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1.

This means that the values of Xn approach the value of X, in the sense
that events for which Xn does not converge to X have probability zero.
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2. Convergence in Probability
For a sequence of random variables X1, X2, . . ., we say that Xn converges
to the random variable X in probability if for every constant ε > 0,

lim
n→∞

P ({|Xn −X| > ε}) = 0.

3. Convergence in Distribution
For a sequence of random variables X1, X2, . . . with corresponding CDFs
FX1

, FX2
, . . ., we say that Xn converges to the random variable X with

CDF FX in distribution if for every x ∈ R where the CDFs are continuous,

lim
n→∞

FXn(x) = FX(x).

Note that almost sure convergence implies convergence in probability, and con-
vergence in probability implies convergence in distribution. These implications
do not hold in the opposite direction.

9.3.2 Weak Law of Large Numbers
Suppose that the random variableX represents a population from which samples
are drawn. Let µX be the expected value of X, σ2 be the variance, and Mn(X)
be the sample mean. The weak law of large numbers for a finite number of
samples says that for any positive constant c > 0, the following holds:

(1) P ({|Mn(X)− µX | ≥ c}) ≤
σ2

nc2

and

(2) P ({|Mn(X)− µX | < c}) ≥ 1− σ2

nc2
.

These inequalities come directly from the Chebyshev inequality. From our def-
initions of convergence, the weak law of large numbers says that the empirical
mean Mn(X) converges to the true mean µX in probability.

Taking the limit of these inequalities as n goes to infinity, we get the weak law
of large numbers for an infinite number of samples:

lim
n→∞

P ({|Mn(X)− µX | ≥ c}) = 0

lim
n→∞

P ({|Mn(X)− µX | < c}) = 1

This finding aligns with our expectations. If Mn(X) is the average of a very
large sample of independent and identically distributed random variables, then
we expect that any given realization of Mn(X) is very close to the expected
value µX . As the number of samples goes to infinity, we expect that any
realization from Mn(X) will be equal to the expected value of the individ-
ual random variables. Therefore, as the number of samples goes to infinity,
P ({|Mn(X)− µX | > 0}) = 0.
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9.3.3 Strong Law of Large Numbers
The strong law of large numbers says that for any random variable X with
expected value µX and sample mean Mn(X), the sample mean converges to
the true mean µX almost surely. Note that the strong law of large numbers
implies the weak law because almost sure convergence implies convergence in
probability. This law does not say that anomalies cannot happen for a very
large number n, but with probability one, these anomalies will not happen.

9.4 Central Limit Theorem
Let X1, . . . , Xn be independent and identically distributed random variables
with variance Var(Xi) = σ2 <∞ and expected value E[Xi] = µ. Now consider
a new random variable Sn, which is defined as the following sum:

Sn =
1√
nσ2

(
n∑
i=1

Xi − µ

)
.

The central limit theorem says that Sn converges to the standard normal
random variable Z ∼ N (0, 1) in distribution, meaning that for all x ∈ R,

P ({Sn ≤ x})→ φ(x).

The central limit theorem is useful because it says that when independent ran-
dom variables are summed up, their properly normalized sum tends toward a
standard normal distribution, even if the original variables themselves are not
normally distributed. This implies that probabilistic and statistical methods
that work for normal distributions can be applied to many problems involving
other types of distributions, assuming a large enough sample size.
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